Tidal evolution of Mimas, Enceladus, and Dione

نویسندگان

  • Jennifer Meyer
  • Jack Wisdom
چکیده

The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus–Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus–Dione 4:2 ee ′-mixed resonance. We find that the free libration of the Enceladus–Dione 2:1 e-Enceladus resonance angle of 1.5◦ can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus–Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas–Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The origin and evolution of a differentiated Mimas

In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an eccentric orbit and distance to Saturn prone to levels of tidal dissipation 30 times higher. While Mimas’ lack of geological activity could be due to a stiff, frigid interior, libration data acquired using the Cassini spacecraft suggest that its interior is not homogeneous. Here, we present ...

متن کامل

ar X iv : 0 80 3 . 22 64 v 1 [ as tr o - ph ] 1 7 M ar 2 00 8 Dynamics of Enceladus and Dione inside the 2 : 1 Mean - Motion Resonance

In a previous work (Callegari and Yokoyama 2007, Celestial Mechanics and Dynamical Astronomy vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of lots of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are sh...

متن کامل

Internal Structure of Enceladus and Dione from Orbital Constraints

Introduction Enceladus is emitting measurable heat (37 GW) from a region centered on its South Pole [1]. Radioactive and accretional heating are expected to be minimal for such a small, low-density body, implying that the observed heat flow is due to past or present tidal dissipation [2]. The tidal heat production for which Enceladus’ eccentricity is in steady state, however, cannot exceed 1.1 ...

متن کامل

ar X iv : 0 80 3 . 22 64 v 2 [ as tr o - ph ] 1 9 M ar 2 00 8 Dynamics of Enceladus and Dione inside the 2 : 1 Mean - Motion Resonance

In a previous work (Callegari and Yokoyama 2007, Celestial Mechanics and Dynamical Astronomy vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of lots of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are sh...

متن کامل

Classification of Satellite Resonances in the Solar System

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io–Europa, Europa–Ganymede, and Enceladus–Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007